
 

Fourteenth International Congress of the Brazilian Geophysical Society 

 

A GPU implementation of the reverse time migration algorithm. 

Jhonatan Amado, UIS; William Salamanca, UIS; Flor Alba Vivas, Ecopetrol; and Ana Ramirez, UIS. 

 

Copyright 2015, SBGf - Sociedade Brasileira de Geofísica 

This paper was prepared for presentation during the 14th International Congress of the 
Brazilian Geophysical Society held in Rio de Janeiro, Brazil, August 3-6, 2015. 

Contents of this paper were reviewed by the Technical Committee of the 14th 
International Congress of the Brazilian Geophysical Society and do not necessarily 
represent any position of the SBGf, its officers or members. Electronic reproduction or 
storage of any part of this paper for commercial purposes without the written consent 
of the Brazilian Geophysical Society is prohibited. 

 ____________________________________________________________________  

Abstract   

This work presents a Graphic Processing Unit (GPU) 
implementation of a pre-stack two-way wave equation 
migration method known as reverse time migration 
(RTM).  The GPU implementation of the RTM 
algorithm is based on the finite difference scheme in 
time and space, to compute the two-way wave 
propagation. The boundary conditions are based on 
the Convolutional Perfectly Matched Layer (CPML) 
strategy.  Experimental results of the migrated image 
for the Marmousi model using the algorithm 
implementation are shown. In addition, results of the 
execution time of the RTM algorithm implementation 
in both architectures, a NVIDIA Fermi GPU and a 
INTEL CPU, show a speed-up of approximately 4x in 
the GPU implementation. Furthermore, results of disk 
transfer vs. RAM memory handling, and granularity 
show the benefits of the implementation on a GPU 
architecture. 

Introduction 

The seismic reflection is the most widely used method in 
oil prospecting. Traditionally, seismic reflection consists of 
three stages: design and data acquisition, seismic 
processing and imaging, and interpretation of the image 
of the subsurface. Different methods have been proposed 
for the seismic imaging stage. Basic and simple methods 
usually fail on finding migrated images of complex 
geological areas, because the reflectivity map has 
insufficient resolution or structures that cannot be clearly 
delineated, producing errors in the prospects. A pre-stack 
two-way wave equation migration known as Reverse 
Time Migration (RTM) has been proposed for imaging 
areas, where dips reach up to 90 degrees or areas 
containing turning waves, such as salt bodies [Pengliang 
et al, 2004]. 

The RTM uses the solution of the full wave equation for 
the accurate imaging of areas of abrupt changes of 
horizontal velocities, regardless of dips in such structure. 
However, RTM method is a computationally expensive 
process since it computes, for each point of the velocity 
model, two wave fields: source wave field and the 
receiver wave field, to then apply an image condition. The 

modeling of the source and receivers wave propagation 
uses the constant-density acoustic wave equation.  

This process is done to each shot in the survey. The RTM 
migration time of a 3D shot in a 16 cores node is around 
10 minutes for a shot of 5000 traces.  

In modern marine acquisitions having hundreds of 
thousand shots, the full RTM migration of a survey is 
challenger in terms of time computing consuming and it 
can take weeks in a cluster of hundred nodes. Usually, 
the RTM migration of a 3D survey is done on a cluster of 
CPUs where each node migrates a shot, using parallel 
programming like MPI or OpenMP to distribute the work. 

Alternatively, parallel programming of GPUs can be used 
in order to reduce execution time of each shot migration 
in a node where we have hybrid HPC with GPUs and 
CPUs. 

Numerical solution of acoustic wave equation 

Since the RTM algorithm is based on the two-way wave 
propagation, it is necessary to first model the wave 
propagation equation, and then find a numerical solution 
of the model. The physical phenomena of the acoustic 
wave propagation through a constant density medium, 
can be described by the following differential equation 

𝜕2𝑃

𝜕𝑡2 = 𝐶2∇2𝑃 

 

( 1 ) 

 where, 𝑃(𝑥, 𝑧, 𝑡) is the pressure field, having (𝑥, 𝑧) as 

spatial coordinates, and (𝑡) as the time coordinate. The 
propagation speed of the wave in the given medium is 

given by 𝐶(𝑥, 𝑧). In equation (1), ∇2 is the Laplacian 
operator that represents the spatial differential. 

The method used to find the numerical solution of the 
acoustic wave equation is the Finite Difference Time 
Domain (FDTD), in two dimensions. In particular, we use 
the second order approximation in time and the eighth 
order approximation of the Laplacian operator. Equation ( 
1 ) can be discretized using the Taylor series in a 

homogeneous grid (𝜕𝑥 = 𝜕𝑧 = 𝜕ℎ) as follows 

𝑃(𝑥,𝑧)
𝑛−1 − 2𝑃(𝑥,𝑧)

𝑛 + 𝑃(𝑥,𝑧)
𝑛+1 = 𝐺2∇2𝑃 

 

( 2 ) 

 
𝐺 =

𝐶(𝑥,𝑧) ∗ 𝜕𝑡

𝜕ℎ
 

 

( 3 ) 

 
where 𝐺 is the Courant parameter, which is required for 

the stability analysis of FDTD method. 



GPU IMPLEMENTATION OF THE RTM 2D ALGORITHM  
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

2 

Dispersion and stability analysis 

In the numerical solution obtained by using the FDTD 
approximation, it is necessary to know the accuracy and 
stability of the result. The conditions of distortion and 
stability for the solution given in equation ( 2 ) are 

 Dispersion: errors related by the truncation of the 
Taylor series for differential operators and errors 
due to rounding the digital representation of 
operation. 

 Stability: given by the consistency of the solution 
obtained by the numerical method when the 
errors are propagating. 

The errors produced by numerical dispersion can be 
observed in Figures 1 and 2. When the spatial component 
is discretized using 8th order, as it is shown in ` 

Figure 1, the wave front representation presents a clear 

improvement in comparison to the spatial discretization of 
2nd order, as it is shown in  

Figure 2. 

` 

Figure 1: Wave front representation using a spatial discretization 
of 8th order. 

 

Figure 2: Wave front representation using a spatial discretization 
of 2nd order. 

The stability condition for the finite difference scheme is 
given by the following expression [Bordind and Slawinski, 
1998] 

𝐶 ∗ 𝜕𝑡

𝜕ℎ
≤ √

𝜀1

𝜀2
 

 

( 4 ) 

 
where 𝜀1 is the sum of the absolute values of the 

coefficients for the temporal operator, i.e.,  𝜀1 = |1| +
|−2| + |1| = 4,  and 𝜀2 represents the sum of the absolute 

values of the coefficients of the 8th order representation of 

the spatial operator, ∇2𝑃. The stability condition is 
therefore 

𝐶𝑚𝑎𝑥 ∗ 𝜕𝑡

𝜕ℎ
≤ √

4

∑ 𝑐𝑜𝑒𝑓 𝑂𝑟𝑑𝑒𝑟 8
 

 

( 5 ) 

 
Stencil data arrangement on a GPU 

Because GPUs do not have an operating system to 
manage their resources, and they are asynchronous 
devices, it is difficult to prevent failures in accessing 
memory. Therefore, a strict and detailed data 
management should be used. Computing the wave field 
at each grid point is given by the stencil data arrangement 
shown in Figure 3.  

 

Figure 3: Stencil data arrangement. Each point (𝒙, 𝒛) of future 
field (yellow) depends on a current field points (blue) in a given 

spatial order, and the point (𝒙, 𝒛) of the past field (green). 

Figure 4: Stencil arrangement used to compute a green point in 
the future, without errors in the memory access. 

To compute the green point shown in Figure 4, the stencil 
arrangement has access to the memory location of all the 
required points. However, if we want to compute the 
green point shown in Figure 5, access to data values 
represented by the red dots are not guaranteed. In the 
latter, wrong values of these points will cause a failure on 
the result of the future point of the field. 

Figure 5: Stencil arrangement used to compute a green point in 
the wave field in the future, including errors in the memory 
access. 

Wave equation solution on a GPU 

The main advantage of the implementation and execution 
of the RTM algorithm on a GPU, is the correct domain 
segmentation [Mckercher and Grossman, 2014]. Two 
structures in the CUDA APIs are used, dimGrid and 



AMADO, SALAMANCA, VIVAS, & RAMIREZ 
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

3 

dimBlock. These structures are used to tell the 
implementation the number of threadsBlock and Grids to 
be used by the GPU.  

The sizes of velocity model change depending on the 
acquisition, and they are not commonly a multiple of the 
size of the Blocks. Therefore, the number of blocks is 
computed as 

𝑁𝑜. 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘𝑠 = 𝑐𝑒𝑖𝑙 (
𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑧𝑒 − 1

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒
+ 1) 

 

( 6 ) 

 
where, Modelsize is the velocity model size, and 
Blocksize is the block size to be used by the GPU. 

CPML boundary conditions on a GPU 

In the numerical solution of the acoustic wave equation, 
the false reflections existing at the borders of the 
computational domain should be avoided. In this work, 
the Convolutional Perfectly Matched Layer (CPML) 
method proposed by [Pengliang et al., 2004] was 
implemented. The wave fronts near to the borders 
obtained using CPML are shown in Figure 6. 

 

 

Figure 6: The wave front behavior in the borders on a constant 
velocity model (1.500 m/s) applying CPML. 

RTM 2D implementation on a GPU 

The RTM implementation on a GPU is divided into 4 
subroutines. The first subroutine reads the seismic traces 
and the velocity field files. The second subroutine 
computes the stability parameters, initializes variables, 
allocates the required memory in the host and the device, 
and transfers data to the GPU to run the kernel. The third 
subroutine solves the source field or the receptors field, 
depending on a given flag. And the last subroutine 
computes the image condition. 

The proposed GPU implementation requires the following 
software characteristics: 

 Linux operating system 

 GPU Nvidia compatible with CUDA 

 Seismic Unix software 

 Drivers and CUDA SDK 5.5 version or higher. 

The data management of the RTM implementation 
contains 3 different areas: an area filled with zeros, a 
CPML and a model area. An example of the data 
management scheme is shown in Figure 7. The 
parameters used for the data management in Fig. 7 are 
Z=4, L=32, and Nx and Nz are the number of points in the 
velocity model.  

Figure 7: Scheme used to compute the wave field. 𝑁𝑥 and 𝑁𝑧 are 
the number of points in the velocity model, Z=4 and L=32. 

Execution strategies 

Two strategies are proposed for the implementation of the 
RTM. The first strategy computes both the forward and 
backward fields and save them in hard drive. Afterwards, 
the image condition is computed by reading both fields 
from the hard drive memory. The output in this strategy 
are three files, two files having the source and receiver’s 
fields, and one containing the map of reflectivity.  

The second strategy is to avoid writing in hard drive. For 
this strategy, forward and backward fields are stored in 
RAM memory of the CPU. Then, the image condition is 
applied using both fields. The output of this strategy is the 
reflective map file only. 

Data flow dependency 

In order to make the RTM implementation compatible with 
Seismic Unix, the user can enter the parameters that are 
needed by the algorithm. Among those parameters, the 
user is required to enter: 

 Velocity and seismic traces file. 

 Velocity model size. 

 Velocity model sampling parameter. 

 Number of shots to be migrated. 

 Frequency for source wavelet. 

 Number of wavelength points. 

A diagram that shows the data provided by the user and 
the parameters computed by the implementation, is 
shown in Figure 8. 

The user assigns the value of the wavelet source 
frequency Fq, and the number of points per wavelength 𝑆. 

The maximum and minimum velocity values  Cmax,  and 

Cmin, respectively, are obtained from the input velocity 

model. Also, the sampling time dt_traces and the location 

of the source and receivers dg = dh_trin are obtained 

from the header´s seismic traces. From Cmin, S and Fq, 

the algorithm computes the parameter dh_mod. This 

parameter is used to guarantee the stability condition, 
according to Eq. (4). If the value dh_mod is not equal to 

dh_tr, the velocity model should be spatially resampled 

using the given value of dh_mod. Likewise, if the 

parameter dt_sta is not equal or less than the parameter 
dt_traces, the velocity model must be resampled in time. 



GPU IMPLEMENTATION OF THE RTM 2D ALGORITHM  
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

4 

Figure 8: Data flow dependency. 

Numerical results of the RTM implementation 

The two-dimensional model used to test the RTM 
algorithm implementation on a GPU is the Marmousi 
model. This complex model, shown in Figure 9, is 
traditionally used to test seismic data processing, and it 
was provided by the French Institute of Petroleum 
[Instituto Frances del Petroleo n.d.]. For all tests, the size 
of the Marmousi model was 1845x600. In addition, for all 
the tests, we used a Ricker source wavelet with frequency 
of 20 Hz, 10 points per wavelength, 5752 time steps, and 
a sampling time of 0.792ms. 

Figure 10 shows the image obtained when 240 shots are 
migrated, and Figure 11 shows the migrated image when 
a Laplacian filter is used to eliminated the 
backpropagation effect.  

Figure 9: Marmousi exact velocity model 

Figure 10: Migrated image in the GPU using 240 shots.  

Figure 11: Migrated image with a Laplacian  filter. 

0

50

100

150

200

250

300

350

400

Core
i7,4Gen,8Gb

RAM,WD sshd

Core i5
1Gen,8Gb

RAM,WD sshd

Xeon E5-
2609,8Gb

RAM WD hd

Core 2 Quad
Q6600 8Gb

RAM,WD sshd

Ti
m

e
 [

s]
 

Cpu performance 

Cpu performance

 
shows the execution time used to migrate one shot in four 
different CPU architectures. All the four devices have the 
same number of cores and same clock operating 
frequency. The RAM and hard disk memory size are the 
same in all devices. The difference among the tested 
devices is the type of hard drive. The resulting execution 
times are expected, except for the INTEL Xeon E5-2609. 
Even though the INTEL Xeon E5-2609 device has larger 
L3 cache memory than the other architectures, the hard 
drive attached to this device was slower, giving a very low 
performance in the execution time. 

Figure 13 shows the comparison of the RTM execution 
time on the CPU devices with the best performance in 
previous test, and the RTM execution time on GPU. The 
GPU used in all tests was Nvidia GeForce GTX-580. The 
strategy tested in this experiment is the first strategy 
previously described, where the forward and backward 
fields are stored in hard drive. In this test, the GPU 
implementation gives approximately a 2.3x speedup when 
compared with the CPUs devices. 

The third experiment is to test the two different strategies 
for the RTM implementation. The first strategy requires 
the transfer the forward and backward fields to the hard 
drive. In the second strategy, only CPU RAM memory is 
used to handle the forward and backward fields. In this 
test, both strategies were implemented on the GPU, and 
the execution times were measured. Figure 14 shows the 
execution times required depending on the type of 
strategy, and the type of CPU-RAM used. 



AMADO, SALAMANCA, VIVAS, & RAMIREZ 
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

5 

0

50

100

150

200

250

300

350

400

Core
i7,4Gen,8Gb

RAM,WD sshd

Core i5
1Gen,8Gb

RAM,WD sshd

Xeon E5-
2609,8Gb

RAM WD hd

Core 2 Quad
Q6600 8Gb

RAM,WD sshd

Ti
m

e
 [

s]
 

Cpu performance 

Cpu performance

 

Figure 12: Execution time of the RTM algorithm in different types 
of CPU architecture; keeping constant the same RAM size and 
hard disk type unless otherwise stated. 

 

0

50

100

150

200

250

Core i7,4Gen,8Gb
RAM,WDHb

Core i5 1Gen,8Gb
RAM,WDHb

Ti
m

e
 [

s]
 

CPU vs GPU performance 

CPU execution

GPU execution

Figure 13: Execution time of the RTM implementation on two 
different CPU devices compared to the execution time of the 
implementation on the Nvidia GeForce GTX-580 GPU. 

The last test consists on evaluating the granularity impact 
of the GPU implementation. Four different sizes of 
threads blocks were tested. Figure 15 shows the RTM 
execution time as a function of the size of the threads 
block.

0

10

20

30

40

50

60

70

80

90

100

Core i7,4Gen,8Gb RAM Core i5 1Gen,8Gb RAM

Ti
m

e
 [

s]
 

Gpu metrics varying the type of CPU 

Strategy 1

Strategy 2

Figure 14: GPU execution time for the two different strategies 
used to implement the RTM algorithm. Strategy 1 uses the hard 
drive device to store the fields, and strategy 2 uses the CPU-
RAM to store the fields. 

0

20

40

60

80

100

120

<2x2> <4x4> <8x8> <16x16> <32x32>

Ti
m

e
 [

s]
 

ThreadsBlock dimension 

ThreadsBlock varation in type of strategies 

Strategy 1

Strategy 2

Figure 15: GPU performance variation changing the applied 
granularity. 

Conclusions 

The RTM algorithm is of great interest for the oil and gas 
industry because it allows to reconstruct images of highly 
complex areas. However, due to the high computational 
cost of this algorithm, and its inherent parallelism, a GPU 
implementation of the RTM algorithm can be proposed.  

When the GPU implementation uses the strategy of 
saving the forward and backward fields on a hard drive, 
the main bottleneck is the speed of hard drive rather than 
the type of processor. SSD disks are faster than hybrid 
SSHD or HD disks.  

The execution time of the algorithm on one GPU is 
always faster compared to the execution time on one 
CPU core, even when the fields are transferred from and 
to the hard disk. Since the bottleneck is storage, the 
strategy of saving the fields in the CPU-RAM will be better 
than storing the fields in the hard drive. 

The speedup achieved by the implementation on a GPU 
when the CPU-RAM is used is approximately 4 times. On 
the other hand, the speedup achieved by the 
implementation on a GPU is only 2.3 times when the 
fields are stored on disk.  

Unfortunately since the field sizes exceed the amount of 
memory inside the GPU, storing the fields inside the 
memory hierarchy of the GPU is impossible. 

Acknowledgements 

This work was supported by the Colombian Oil Company 
ECOPETROL and COLCIENCIAS, as a part of the 
research project grant No. 0266-2013 

References 

Billete, Frederic, Sverre Brandsberg, and Dahl. "The 2004    
BP velocity benchmark." 2005. 

Boarding, Phillip R. "Finite Difference Modeling - Nearly 
Optimal Sponge Boundary Conditions." 2004. 

Bording, Lines P, and R L Slawinski. "A Recipe For 
Stability Analysis Of Finite Difference Wave 
Equation Computations." 1998. 

Fornberg, Bengt. "Generation of Finite Difference 
Formulas on Arbitrarily Spaced Grids. 
Mathematics of Computation." 1988. 



GPU IMPLEMENTATION OF THE RTM 2D ALGORITHM  
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

6 

Instituto Frances del Petroleo. n.d. 
http://www.ifp.fr/IFP/en/aa.htm (accessed Abrii 
20, 2014). 

Mckercher, Cheng, and Grossman. Professional CUDA C 
Programming. 2014. 

NVIDIA. "White Paper Nvidia Next Generation and Cuda 
Compute." Cuda Compute Architecture: Fermi 
Generation. Pages 1-22. n.d. 
http://www.nvidia.com (accessed Enero 2014). 

Pengliang, Yang, Gao Jinghuai, and Wang Baoli. "RTM 
using effective boundary saving: A staggered 
grid GPU implementation." 2004. 

Vivas, Flor Alba, and Jesus David Cataño. Análisis de la 
estabilidad, dispersión numérica y costo 
computacional de la migracion RTM de la 
ecuación de onda acustica en dos dimensiones. 

2011. 

 

 


